Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
ألاسم
أَحْكَام ; إِقْلِيم ; إِيَالَة ; اِسْتِبْداد ; اِسْتِبْدَادِيَّة ; تَحَكُّم ; تَحَكُّمِيَّة ; تَسَلُّط ; تَعَسُّف ; دِكْتاتُورِيَّة ; سُؤْدُد ; سَطْوَة ; سلطان ; سُلْطَة ; سيادة ; سَيْطَرَة ; غَلَبَة ; قَبْضَة ; قَرَار ; قَضَاء ; قَضًى ; مَحَلَّة ; مُلْك ; نُفُوذ ; هَيْمَنَة ; وِلَايَة
الفعل
خَطَّطَ
الصفة
مُخَطَّط ; مُسَطَّر ; مُسَيَّح ; مُقَلَّم
In geometry, a surface S is ruled (also called a scroll) if through every point of S there is a straight line that lies on S. Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space.
A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007).
The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry. In algebraic geometry, ruled surfaces are sometimes considered to be surfaces in affine or projective space over a field, but they are also sometimes considered as abstract algebraic surfaces without an embedding into affine or projective space, in which case "straight line" is understood to mean an affine or projective line.